By 0. Kaminska, Ch. Cornelis and V. Hoste

Introduction

- This is a classification task SemEval-2018 Task 1 "Affect in Tweets" for English tweets labeled with emotions' intensity (anger, sadness, joy, fear).
- We aimed to use the interpretable Machine Learning (ML) method (the weighted k Nearest Neighbor (wkNN)) to compete with Neural Networks(NN) based solutions.

Experiments

- We examined five text embedding approaches' performances by tuning the best text preprocessing and the number of neighbours \mathbf{k} for the wkNN model for each. As a similarity function for the wkNN, we used cosine. Moreover, we used Pearson Correlation Coefficient (PCC) for evaluation.
- To improve results, we appended scores from emotional lexicon vocabularies to the embedding vectors.
- Finally, we made the ensemble of the best embedding models with the tuned voting function applied to the models' outputs and selected embeddings to use. Our final solution is illustrated in Picture 1.

Results for the test data

- We checked our solution on the test data (PCC decreased compared with train) and submitted predicted labels to the competition page - we received fourth place with PCC $=0.635$ (Table) , where top-3 solutions were NN-based.
- We evaluated several test tweets manually to examine the solution's explainability and found some patterns (Picture 乙).

			Table 1. Winners		
Team	Average PCC	Anger	Fear	Joy	Sadness
\#1	0.695	0.706	0.637	0.720	0.717
\#2	0.653	0.670	0.588	0.686	0.667
\#3	0.646	0.667	0.536	0.705	0.673
\#4 (we)	$\mathbf{0 . 6 3 5}$	$\mathbf{0 . 6 3 8}$	$\mathbf{0 . 6 0 1}$	$\mathbf{0 . 6 3 1}$	$\mathbf{0 . 6 7 0}$

Conclusion and the future work

- We evaluated the explainable ML method for the emotion detection and showed optimizations and ensemble method can compete with NN solutions.
- In the future, we plan to incorporate another method for an unbalanced fear dataset and consider the inherently fuzzy nature of emotion data.

